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We present a method to obtain the concentration decay for coagulation, A+ A4 —+ A (e=1),
and annihilation, A+ A — 0 (e = 2), of diffusing particles, on two-dimensional lattices. By
mapping these reactions into processes that preserve the particle number, we find an approximate
solution, which, as compared with numerical simulations for the square lattice, turns out to be exact
for short and long times. The particle number along the whole course of the reaction is obtained
in a closed form, and can be written as a function of only the mean number of distinct sites visited
by a single particle. For a homogeneous initial particle distribution, the particle number behaves
at long times as N(t) ~ eN(0)(8aDt)™ ! In(8bDt), where D is the diffusivity and a and b depend on
the lattice type. On the other hand, for a strongly inhomogeneous (fractal) initial distribution, the
particle number decays at long times as N(t) ~ eN(0)(8aDt)™"/? In(8bDt), where v is the fractal
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dimension of the initial particle distribution (0 < v < 2).

PACS number(s): 82.20.Mj, 02.50.—r, 05.40.+j

I. INTRODUCTION

A topic of considerable interest in the study of diffu-
sion limited reaction systems corresponds to one species
coagulation (A + A — A) and annihilation (4 + A — 0)
(hereafter labeled by ¢ = 1 and € = 2, respectively) in a
discrete space. The advantage of working on a lattice is
that it is not necessary to assign a finite volume to the
particles, making such models very suitable for numerical
simulations [1-4].

It has been established that both annihilation and co-
agulation processes belong to the same universality class
[5], so that both reactions should show the same con-
centration decay law. For d > 2 the mean field result,
C(t) ~ 1/t, holds, but the kinetics is strongly affected by
diffusion for d < 2, where C(t) ~ t~%/2. Tt is interest-
ing to note that, in spite of the analytical—in principle,
exact—approaches used to deal with this problem [5-7],
the exact solution for all times is only known for the one-
dimensional case [8-12].

In this work we concentrate on the critical dimension
d = 2, where the effect of the discretization of the space is
not yet well understood. Some analytical methods [5-7]
give, for the asymptotic particle concentration decay,

cit)~ —, (1)

whereas from other approaches on the lattice [13-15], one
obtains

C(t) ~t 1. (2)

Results from numerical simulations [1-3] seem to agree
with Eq. (1). In other works [4], authors fitted Monte
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Carlo results with a general power law of the form
C(t) ~ t~=, and found that, as time increases, a seems
to approach an asymptotic value aq, < 1.

Let us recall that the asymptotic behavior given by
Eq. (1) can be straightforwardly obtained from the mean
number of different sites visited by a random walker, S(t).
In fact, in the spirit of the Smoluchowsky approach [16],
by considering the survival of independent random walk-
ers in the presence of a single trap, one can assert that
[1,17-20]

C(t) ~1/5(t) )

should approximately hold for any spatial dimension.
Numerical results [20] support this conjecture, but no
analytical proof is available. Note that S(t) contains in-
formation on the dynamics of only one single particle,
whereas from the exact solution for d = 1 one has learned
that the information relevant to the reaction kinetics is
involved in the relative motion of two particles. In fact,
for the one-dimensional problem, it was established that
the concentration decay along the whole reaction can be
computed from the survival probability of a single pair
of particles.

In this work we derive relation (3) from an approach
that takes into account the interaction of each particle
with all the others. For the reactions under study, this
yields the following approximated solution, in terms of

S(t):

N(t) _ 1 @
1-— %C() + %C()S(Zt) ’

where N(t) is the number of particles at time ¢t and Co
is the initial particle concentration. As compared with
Monte Carlo simulations on a square lattice, this expres-

3646 ©1994 The American Physical Society



50 TIME-DEPENDENT REACTIVITY FOR DIFFUSION-. ..

sion turns out to be exact for short and long times, and
its maximum error reaches about 20% (near t =~ 1/8D).
The factor 2 in the argument of S reveals the two-particle
character of this many particle problem.

II. THE METHOD

We consider a system of purely diffusive particles, so
that the mean square displacement of a single particle at
all times is exactly given by

(r?(t)) = 2dDt, (5)

where D is the diffusion coefficient. We assume that
the particles perform a continuous time random walk
(CTRW) on a two-dimensional lattice of spacing £, with
equal jump probability to any of the nearest neighbor
sites. It is known that, in the frame of the CTRW theory,
pure diffusion is obtained by assuming that the jumps of
a single particle follow a Poissonian statistics, i.e., that
the jump waiting time density (WTD) is exponential,

P(t) = Ae™ = L7 {p(w)}, (6)

with ¥(u) = 1/(1 + u/)), such that the mean waiting
time is (t) = [~ ty(t) dt = 1/X. Here £ (£7') stands
for (inverse) Laplace transform. For this process, the
mean square displacement of one particle is given by Eq.
(5), with D = £2)/2d. Hereafter, we take £ = 1.

In the coagulation model, the reaction mechanism is
such that when a particle arrives at an occupied site,
both particles transform into a new single particle and
a new waiting time starts. In the annihilation model,
instead, both particles are removed.

We shall map this problem into another one, in which
the total number of particles N(0) remains constant,
while the identity of the particles changes when they
meet, following the rules [11]

G + A for coagulation,
A+4- { G + G for annihilation, (7)
G+A->G+ A, (8)
G+G—->G+G. 9)

Thus, after an encounter, both particles become
“ghosts,” (G), or one of them becomes a “ghost,” and
the other preserves its identity, A, respectively. In this
scheme, each particle behaves as if it were alone in the
lattice: its motion is not affected by the other particles.
At each encounter of two A particles, the interaction is
reduced to an irreversible change of identity, as indicated
in Egs. (7)-(9).

Let us concentrate on a given particle pair (3,j), ini-
tially situated at r; and r;j, respectively (r; # r;). The
probability that they meet for the first time within the
time interval (¢,t + dt) is given by F,(r; — r;,t)dt, where
F,(r,t) is given by the first passage time probability den-
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sity on site r for a random walker initially situated at the
origin, whose evolution reproduces the relative motion of
particles (z,7). If the WTD of each particle is given by
Eq. (6), this new CTRW has also an exponential WTD,
with twice the jump rate:

P2(t) = 20e™ 2 = L7y (u/2)}.

We stress that, in general, the relative motion of two
random walkers corresponds to a CTRW for which there
is not a well defined WTD 4),(t), as it is based on the
pooling of two renewal processes. This pooling results in
a renewal process in turn only for the exponential single
particle WTD given in Eq. (6); therefore in principle this
method is only valid for an exponential ¥(t).

For the many particle system we must consider the
relative motion of each particle ¢ with respect to all the
other particles j. The probability that any two particles
of the whole system meet for the first time in (¢,¢ + dt)
is

(10)

F(t) dt = % YN Fa(r; — i, t)dt,

i j#d

(11)

where rj is the position of particle £ at ¢t = 0. When
a pair meets for the first time, the number of particles
changes if the encounter corresponds to Eq. (7). The
probability for such an encounter to occur is a compli-
cated function of the time, say A(t), which we shall com-
pute in an approximated form later. In terms of these
functions, we are able to write the following evolution
equation for the particle number:
N(t) — N(t+ dt) = eA(t) F(¢) dt, (12)
where N (t) is the number of particles A at time ¢. From
here, we obtain
d
—C(t) = —A()(2), (13)
dt

where we have defined the concentration at time ¢

normalized by the initial concentration Co as C(t) =
N(t)/N(0), and

F(t) = ZNG(O) SN Bar; i) (14)

i j#

1
k(t) = GN(O)

is the first encounter rate per particle.

The probability A(t) cannot be exactly obtained. An
approximated form could be written in terms of space
correlation functions. If particles are placed at random
with occupancy probability Cy, it is known that the par-
ticle number decay of this single species reaction-diffusion
model is not very affected by the concentration fluctua-
tions [21]. Then for the one species reaction model that
we are considering, a first approximation for A(t) corre-
sponds to taking

NO1* _ o
Al) = | —==]| = C%@4). 15

0~ |55] = (15)
Within this assumption, the concentration equation be-
comes
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d 2
S0 = —r()C* (1), (16)

whose solution reads
(17)
with
t
p(t) E/ k(t') dt'. (18)
0

According to the above discussion, «(t) has to be com-
puted from the relative motion of two particles, averaged
over the initial distances of all the particle pairs. Instead
of summing over particles, we can sum over all the lattice
sites, r = (r1,72), by introducing an indicator function,

1 if there is a particleonratt =0
)= { P (19)

0 if there is no particle on r at t = 0.

Note that > p(r) = N(0), and (p(r)) = Co. In this way,
the overall encounter rate becomes

FO) = 3 Yp) Y pE-rt, (20)

r r'#r

where now the sums run over all the lattice sites. Thus

'
J

%[cos kq + cos k2]

1letkr + 2 cos ko]

K.(t) = %ZP(I‘)Fz(I’,t) = %COZFz(I',t). (21)

r#0 r#0

In this way we are justifying the introduction of a time-
dependent reaction rate in the mean field chemical-
kinetic equation, as proposed by Argyrakis and Kopel-
man in Ref. [22].

III. ANALYTICAL SOLUTION

Let R(r,t)dt be the probability for a given single par-
ticle initially situated at the origin, to reach the site
r = (r1,72)—not necessarily for the first time—within
the time interval (¢,t + dt). In the Laplace representa-
tion, for a nonbiased random walk on a two-dimensional
lattice, we have [23]

R(r,u) :/ dt e " R(r,t)
0

1 [" T cos(ryky) cos(rakz)
— dk dk , 22
72 J, 1/0 21— p(w)w(ky, k) (22)

where w(ki,k2) = w(k) is the structure function of the
lattice. Some instances are

Il

for a square lattice

3lcosky + cos ky + cos(kz + k3)] for a triangular lattice (23)

for a hexagonal lattice.

Let F(r,u) be the probability density for the time in which the site r is reached for the first time. In the Laplace

representation it can be obtained as [24]

F(r,u) =

R(r,u)
R(0,u)’

r #0. (24)

Considering now the relative motion of two particles, the probability density F»(r,t) for the time of their first encounter
is given by Egs. (24) and (22), by replacing 9(t) by %2(t). In the Laplace representation this corresponds to replacing
u by u/2, i.e., Fp(r,u) = F(r,u/2). Bringing this into Eq. (21) we obtain

Z cos(riky) Z cos(rzk2)
_ ECO 1 T T ry=—o00 rp=—00 .
wlu) = 5~ ﬂzR(O,u/Z)/O dkl/O dkz 1= ¢ (u/2)w(ky, k2) !

Using the Poisson summation formula in the form
S o cos(rk) = 32 6(k/2mr — m) and the fact
that w(0,0) = 1, this expression reduces to

( ) GC() l: 1

k(u) = —

2 [[1—9(u/2)]R(0,u/2)
Next, we shall recast this expression in terms of the

mean number of distinct sites visited by a particle S(t).

1. (25)

f

Let S, be the mean number of distinct sites visited by a
particle as a function of the time step number n, and
P,(r) the probability of finding the random walker—
initially situated at the origin—in site r at step n. It
is well known that the generating functions S(z) =
$°0° 2"S, and P(r,2) = 3 g 2" Pa(r) are related by [25]

1

5(z) = (1-2)2P(0,2)

(26)
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In continuous time Laplace representation, this corre-
sponds to

s =" 5 = y(u)
1 1
SuEI@PGz =@
Taking into account that R(r,u) = P(r,z = ¥(u)), we

obtain

1 1
ROu) ==~ — ~
e DL
Replacing this into Eq. (25), and from Eq. (17), we
finally get

1 1
1+ L Yk(u)/u} 1- 5Co + %C’OS(2t)'

C(t) = (28)

We stress that the factor 2 in the argument of S makes
it evident that, as in one dimension [11-13], this solution
involves information on the survival probability of a sin-
gle pair of particles. The calculation of C(t) on a square
lattice is explicitly worked out in Appendix A.

The function S(t) deserved the study of many authors
[26-28]. In particular, using the results of Henyey and
Seshadri [27] we verified the following behavior for long
times:

In(b
s@) ~hen =D pro ), ()
with 7 = 8Dt = 2At = 2t/(t), where (t) = 1/) is the
mean waiting time between consecutive steps of a sin-
gle particle, (a,b) = (m,8), (2"' 12), and (347"5,12) for
square, triangular, and hexagonal lattices, respectively,
and

Jj=

is a function such that h(b7 — oco) = 1. However, this
asymptotic value is attained very slowly. For example,
for ¢ = 10%(t) it represents a 3% correction, whereas at
t = 10'8(¢) it still differs from unity by 1%.

IV. THE REACTION RATE

Before presenting simulation results, it is convenient to
analyze the kind of function that this approach yields for
the reaction rate x(¢). As an example, we shall consider
hereafter a square infinite lattice, for which Eq. (25)
yields (see Appendix A)

K(u) = =Cy 2’\+"2 LET (31)
2 u K(2A+u

where K(z) is the complete elliptic integral of the first
kind [29]. It is not possible to obtain the exact inverse
Laplace transform of x(u). However, from Tauberian the-

3649

orems [30], we can infer the long and short time behavior
of its integral, Eq. (18),

(1+2)t)

2 22t
FK ( 1+2Xt

p(t) = %co [

—le for t 500 or t— 0.

(32)

Remarkably, this expression agrees with the numerical
inverse Laplace transform of x(u)/u in the whole time do-
main, with a maximum error lower than 6% near t ~ (t).
Furthermore, from the definition of x(t), Eq. (14) or
Eq. (21), it is easy to see that x(t — 0) = eACy. For
other times, we have verified that taking the derivative
of the expression for p(t) in Eq. (32) is a good aproxi-
mation, which for long times agrees with Tauberian the-
orems (Karamata’s version [31]),

<)~ gy (A4 140 - B/~ 7))

for t > 00 or t— 0, (33)

where p = (2At)/(1+2At), and E(p) is the complete ellip-
tic integral of the second kind. Near z = 1, the function
K (z) can be approximated as K(z) =~ In(4/v1— z2),
showing that Eq. (33) tends slowly to the form

4w D

I‘&(t) ~ €7TCO Co m

A
In[E(2x)] (34)

(see Fig. 1).
Coming back to Eq. (17), the approximated form for
p(t) in Eq. (32) yields

) ~ [ o & Coiﬂit)_]’
2 )

27t
K( 142Xt

for t 500 or t— 0, (35)

for the concentration decay. In particular, for long times,
we have

-1
C’(t)z[l—%C+ 147 J

2%z 2 In[4(1 + 7)/V/1 + 27]

2 In@®7) o _iyax=1+8Dt,  (36)
1reCo T

in agreement with Eqgs. (28) and (29). We stress that a
detailed comparison between Eq. (36) and simulation
results requires the factors of the time variable to be
explicitly considered. In fact, the logarithmic function
In(ct) = Inc + Int makes the values of ¢ and ¢ equally
relevant, although they can differ in some orders of mag-
nitude.
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FIG. 1. Logarithmic plot of
the rate k(t), for coagulation
on the square lattice. The up-
per full line is the numerical in-
verse Laplace transform of Eq.
(31), whereas the lower full line
is the approximated form given
by Eq. (33). The dashed line

shows the asymptotic form of
Eq. (34). Inset: relative differ-
ence between full lines, in loga-
rithmic plot, showing that both
expressions coincide asymptot-
ically.

log t/<t>

10

V. SIMULATION RESULTS

We have performed numerical simulations of the re-
action A + A — A on square lattices of unitary lattice
spacing. The simulation starts by generating the waiting
times for the first step of each particle, from the expo-

nential WTD 4(t) = Aexp(—At). Then we pick up the
minimum of these N(0) times, say t, and move the cor-
responding particle to one of their four nearest neighbor
sites with equal probability. If the new position had a
particle, the incoming particle is rejected, the particle
number N(0) is decreased to N(t) = N(0) — 1, and the

FIG. 2. Decay of the relative
concentration C(t) = N(t)/
N(0) for coagulation with an
o - initial distribution of one par-
ticle per site. The full line
is our analytical result. For
t < 10*(t) it is calculated as
- the numerical inverse Laplace

0 T T L T T
T T T T
N 0.6 <
N
N
N
l — N
AN 0.8
N
N
N
)
N
Ny 9
\\\

FS | D

Z -2 A\

o N i . " n
° N 0 2 3 4 5
lal \\\

o N

o -3 > -

—

transform of Eq. (A3), whereas
for t > 10%(t) it is computed
from Egs. (28) and (29). The
dashed line represents Monte
Carlo simulations on a square
300 x 300 lattice. Inset: the
relative difference between the-
ory and simulations. The full
line corresponds to the approx-
imated form Eq. (35), whereas
the dashed line corresponds to
the numerical inverse Laplace

-5 q transform, from Eq. (A3). The
| N | | | straight dotted line has slope
—0.059.
-1 0 1 2 3 5 6

log t/<t>
10
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c(t)

FIG. 3. As in Fig. 2, for an
initial concentration Cy = 0.1
on a lattice of 792 x 792 sites.

log t/<t>
10

process is repeated by searching the minimum of the N(t)
remaining waiting times. If no particle was in the new
position, a new waiting time is generated for the jumping
particle, with the same exponential distribution, and the
process is repeated.

In Fig. 2 we show the Monte Carlo simulation re-
sults over 114 realizations for an initial distribution with

one particle per site (Co = 1), on a 300 x 300 lattice.
Here, A = 0.9, corresponding to D = 0.225. In Figs.
3 and 4 we show simulation results for a random dis-
tribution with initial concentration Cy = 0.1 and 0.05,
respectively. In Fig. 5 we bring all these curves together,
in a log-log plot. In all cases the dashed line corresponds
to the simulation result and the full line stands for our

FIG. 4. As in Fig. 2, for an

1.0 T T T
T T T T
N 10}
0.8 [~ \\ -
\
\
\
N
\
\
\
0.6 F ‘\\ 1020 ]
— ) ‘\
P R
A “ 1 Il
&) W11 2 ¢ 5
0.4 \ —
Ay
AY
A)
\
\
.
\\
\
0.2} €. = 0.05 \ :
0
\\\s‘
0.0 1 1 1

1 initial concentration Co = 0.05
on a 1120 x 1120 site lattice.

log t/<t>
10
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FIG. 5. The same curves as in Figs. 2-4, in a log-log
plot. For comparison, the upper line shows the function

C(t) = 1/[1 + CoS(t)].

analytical prediction, Eq. (35). The inset of each figure
shows also, as a log-log plot, the relative difference be-
tween simulations, CMC(t), and theory, Eq. (35), given
as |C(t) — CMC(t)|/CMC(t). They show that the pre-
dicted decay is approached very slowly; for instance, in
Fig. 2 it can be seen that this difference decays as slowly
as ~ t70:059 (straight line in the inset).

We see that the theory approaches better the simula-
tion results for diluted systems (Co < 1), whereas in all
cases it becomes exact for t — 0 and has a systematic ex-
cess error during the transient. For t — oo it is expected
to become also exact. However, this trend is so slow that
it is far away from the simulation range, and possibly,
from most of the experimental ranges of interest [32].

VI. THE EFFECT
OF THE INITIAL PARTICLE DISTRIBUTION

Until now, all the approaches to reaction-diffusion
models considered a well defined (nonvanishing) initial
particle concentration Co. What happens, however, if
the initial particle distribution on the lattice has a frac-
tal dimension 0 < v < d? This situation is of interest in
the study of formation of domains in the Ising model [33]
and for particles in percolating clusters. In this case

N(0) ~ L, (37)

where L is the typical size of the system. This means
that Cp = N(0)/L® would vanish if the lattice were in-
finitely large. But for all practical cases, one deals with
finite size systems, for which the problem is well posed by
considering that Cy depends parametrically on L, with
L < oo.

For d = 1, it is possible to obtain exactly the particle
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number decay at all times [34]. The solution shows that
the fractal distribution is preserved along the reaction,
giving rise to a new asymptotic behavior, N(t) ~ t~7/2.
For higher-dimensional lattices, scaling arguments [35]
provide the general form N(t) ~ [S(t)]”"/%. For d = 2,
this gives N(t) ~ (t/Int)™"/2, with 0 < v < 2, whereas
ford=3, N(t) ~t~7/3 with 0 < v < 3.

We can use the present approach in order to test this
particle number decay for d = 2. We consider first the
simple case of particles initially placed on a line, which
corresponds to a well defined exponent v = 1. Proceeding
as in Appendix A for the square lattice, we place the
particles along the line 7, = 0. Using the relation

/°° dr e " Iy(zz) er(mz) =[1- 22}71/2 - 2/mK(z) .
0 r#0

with z = ¥(u/2)/2 = A/(2X + u), we readily obtain the
exact form

E e[ VaAxFu
K(u)_§§)Fz(r,u)—§ mj_l}. .

Here, the hypotheses of the suitable Tauberian theorem
are satisfied for long times, yielding

(1 + 2Xt)
K( 2)t )

€
p(t) = 3
142Xt

- lJ for t - c0.  (39)

The relative particle concentration, C(t) = N(t)/N(0),
follows from Eq. (17) as

N(t) _ 2 __ In(b7)
N(O0) ~ 2—e+ey/m(l+20)/K(2Y)  e/ar’

(40)

with 7 = 14+8Dt, and (a,b) = (m,8). Note that this mod-
ifies the above mentioned scaling results, showing that
the logarithmic term is not affected by the fractal dimen-
sion. This is a peculiar property of the two-dimensional
lattice. In Appendix B we prove that this is also the case
for 0 < v <2,

N(t) _ 27/24 In(br)
N(0) = €T(v/2) am/2’

(41)

whereas the time-dependent reactivity slows down as
[compare with Eq. (34)]

4D

for t — oc.
(4Dt)1-7/%In(64D?) ort e

k(1) ~ e0(v/2)
(42)

In Fig. 6 we show the simulation for v = 1. We started
with N(0) = 5000 particles on a line of a 5000 x 5000
lattice, with periodic boundary conditions. The full line
corresponds to Eq. (17), after numerical inverse Laplace
transform for p(t) = £L71{x(u)/u}, using Eq. (38). The
upper dotted line shows, for comparison, the scaling form
N ~ [In(bt)/(at)]*/2, which is clearly not correct.
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o~o T T T T T T T
-1/2
c(t)~s(t
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-1 0 1 2 3 4 5 6 7

log t/<t>
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FIG. 6. Particle number decay for A + A — A with the
particles initially situated on a line. Here, N(0) = 5000 and
the lattice size is 5000 x 5000 with periodic boundary condi-
tions. The dotted lines show simulation results. The lower
one, shown for comparison, corresponds to a homogeneous ini-
tial distribution and coincides with the curve of Fig. 2. The
lower full line corresponds to our theory, Eq. (42), whereas
the upper full line shows the scaling result N ~ [S ()]7Y/3,
which is clearly incorrect in this case.

VII. DISCUSSION

In this work we have investigated the particle concen-
tration decay for one species coagulation and annihila-
tion reaction-diffusion models in a two-dimensional lat-
tice. Our approach is essentially based on a scheme in
which the initial particle number is preserved, by identi-
fying reaction process as an irreversible particle identity
change.

This picture leads to a differential equation, Eq. (13),
in which the main ingredients are the overall reaction
rate k(t) and the probability of an encounter of two A
particles, A(t). This scheme provides a way to exactly
obtain k(t) from CTRW results for the first passage time
density of the relative motion of a pair of particles. On
the other hand, the probability A(t) cannot be exactly
obtained. Here we approximated it by the square value
of the current concentration of A particles, Eq. (15).

This yields a mean field equation, Eq. (16), with a well
specified time-dependent reaction rate coefficient «(t),
which can be obtained exactly in the Laplace representa-
tion, for all integer dimensions. We translated this result
in terms of the mean number of distinct sites visited by
a single random walker, S(t), obtaining Eq. (28). This
equation has the known scaling form, Eq. (3).

Finally, we would emphasize the following remarks on
the method introduced here.

(1) It offers an explicit closed expression for the parti-

cle number decay along the whole course of the reaction
on any two-dimensional lattice. This is exact at short
and long times, and the difference with simulation re-
sults is mainly due to the approximation in calculating
the probability A(t) and to the fact that the analytical re-
sults refer to an infinite lattice, whereas the simulations
consider a finite square lattice with periodic boundary
conditions. The method is able to distinguish between
the very similar decays found in the literature, Eq. (1)
and Eq. (2), favoring the first one.

(2) It makes explicit the role of the initial conditions.
In particular, for strongly inhomogeneous distributions
such as random fractals, the asymptotic behavior be-
comes, according to Eq. (41),

N(t) | Int
Ny " iz

where « is the fractal dimension.

(3) It offers an alternative path towards a demonstra-
tion of the relevance of the mean number of distinct sites
visited by a random walk to bimolecular reaction kinetics,
in two or more dimensions, as long as the initial particle
distribution is homogeneous.

(4) It explicitly shows that, in these reactions, the rel-
evant particle dynamics to be considered is the relative
motion of a pair of particles. According to simulations
(see Fig. 5), this fact—which was already well estab-
lished for the one-dimensional case—is essential in the
correct description of the concentration decay.

(5) It gives an explicit form for the reaction rate along
the whole course of the reaction, Eq. (33) (see Fig. 1),
which at long times decays as slowly as 1/ In(bt), confirm-
ing in this way the Smoluchowsky ansatz in two dimen-
sions [36]. Moreover, it extends this result for the case of
an initial fractal distribution of reactants, for which the
reactivity is given by Eq. (42).

(6) These results point out that, in two dimensions, the
decay involves logarithmic functions. These cause the
asymptotic values to be approached so slowly that one
must be able to observe the evolution—experimentally
or numerically—over several time decades, in order to
verify the analytical predictions.
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APPENDIX A: CONCENTRATION DECAY
ON A SQUARE LATTICE

In this Appendix we shall obtain the explicit form of
the particle concentration decay for a square lattice. In-
stead of using the well studied form of S(t), we shall
proceed by recasting the expression (22) in the form
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R(r,u) = %A dx e_z/O dlcl/0 dkg cos(r1ki) cos(rakz) explzy(u)w(ky, k2)]-

In particular, for the square lattice, we have
1 oo ™
R(r,u) = —2/ dx e_’:/ dky cos(r1k;)
7™ Jo 0
z
X exp [§¢(u/2) cos kl]
X / dk3 cos(rak2)
0

X exp {;1/)(11,/2) coskz] ,

which can be written in terms of the hyperbolic Bessel
functions as

R(r,u) = /Oco dz e~*1,, (gzﬁ(u/Z)) I,, <§1/;(u/2)) .

Taking into account Eq. (24), this renders for Fy,

Fy(r,u) = Jo dx e L, (z¢(u/2)/2) L, (z(u/2)/2)
’ IS dz e==I2(zv(u/2)/2) :

(A1)
With the identity Z(rh”)#o,o) L, (y)I,(y) = ¥ —
I2(y), Eq. (21) yields

1
[1—¢(u/2)] 2K (¥(u/2))

K(u) = gco { 1} , (A2)

where K(z) is the complete elliptic integral of the first
kind [29] and Cp is the initial concentration. Finally,
from Eq. (17) we get

APPENDIX B: CONCENTRATION DECAY
FOR A FRACTAL INITIAL DISTRIBUTION

In order to derive Eq. (41) for 0 < v < 2 on a square
lattice, we first recast Fa(r,u) as

F(r,u) = F(r,u/2)
(u+2X)
2K (2)0/(2) + u))

y / T gt e~ (ML, (A)],  (B1)
0

where r = (71,72) # (0,0). The overall reaction rate is

R(t) = 5 D Fa(rt), (B2)

r#0

where the sum runs over all the initially occupied sites.
For a fractal initial particle distribution, the number of
initially occupied sites within a sphere of radius r =
/72 + 12 centered on a typical particle grows as r77!
[cf. Eq. (37)]. In polar coordinates, this sum can be
calculated as

> L, (A, (M)

>0

2m oo
:/ d()/ dT""’“lIrcosO(At)IrsinG(’\t)' (83)
0 Jo

The hyperbolic Bessel functions admit the following ap-

C(t) = N(t) proximation for large argument [29]:
N(0) )
-t z Eaat
€ € 1 22+ u ~ € 1 )
= |1~ ;Co+ ;CoL™H{ 5 —— : 1,(z) = (1 - —) ; (B4)
[ gCot 500t {u2 2/mK(2) H Nore z
(A3) which yields
.
e2z\t oo 1 /2
Z‘r'v-lIr (/\t)Ir (,\t) - _[1 — 1/()\t)]_1/4 dr - =
1 2 At o At
r>0
—_ I" 2 L 1-— 1/(At)]~1/4 ln 1 —v/2 ~ F( /2)62/\t(2At)—1+-y/2
=0/ 5575 1-1/(At) K ‘
In this way we find (implying that, for long times,
€ (u+2X)
w(u~ 0) = SD(v/2)
2 2K (2X/(2A + u))
i [(v/2) m(2Xt)/2 e (v/2) nT7/?
p(t)=§ (v/2) m(2A8)*% e L(v/2) (B6)

x/ dt e “t(2At)Y/271,
0

We must keep in mind that this holds for large ¢, as it
gives information only for small u. The leading term is

€ w(uf/A)~/?
w(w) ~ ST (y/2) )

212K (85)

(B5)

v K(z2Y) 2 (v/2) In(87)’

with 7 = 2At = 8Dt. Note that this coincides exactly
with Eq. (32) when v — 2, corresponding in this limit
to a homogeneous (two-dimensional) initial distribution
with concentration Cy = 1.
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